Désolé, cet article est seulement disponible en Português.
Conjeturar com o Geogebra
Auteur: Cláudia Maia-Lima | Affiliation: ESE-IPP |
Auteur: Angela Couto | Affiliation: ESE-IPP |
Neste artigo apresentamos o desenvolvimento de uma tarefa de investigação que teve como objetivo principal predispor os estudantes para criar matemática e, com isso, aumentar a sua autoestima nesta área, em particular na Geometria. Nesse sentido utilizamos o Geogebra que tem sido fortemente valorizado e reconhecido pela comunidade nacional e internacional e do qual somos frequentes utilizadoras.
A metodologia adotada nesta tarefa de investigação segue uma abordagem qualitativa e interpretativa. A recolha de dados foi efetuada nas duas turmas do 3.º ano da Licenciatura em Educação Básica, no ano letivo 2013/14, inscritos na unidade curricular de opção: Matemática, Materiais e Tecnologias.Mots-Cles: Geometria Dinâmica, Geogebra, Geometria, Tarefa de investigação.
This paper presents the development of a research task which aims to predispose the students to create math and, thus, to increase their self-esteem in this area, particularly in geometry. In this sense we used Geogebra which has been strongly valued and recognized by national and international community and of which we are frequent users.
The methodology adopted in this research task follows a qualitative and interpretative approach. The data collection was conducted in two classes of the 3rd year of the Graduation in Elementary Education, in the academic year 2013/14, enrolled in the course: Mathematics, Materials and Technology.
Keywords: Dynamic Geometry, Geogebra, Geometry, Research Task.
Conjeturar com o Geogebra
Auteur: Cláudia Maia-Lima | Affiliation: ESE-IPP |
Auteur: Angela Couto | Affiliation: ESE-IPP |
Références
Abrantes, P., Serrazina, L., & Oliveira, I. (1999). A matemática na educação básica. Lisboa: Ministério da Educação, Departamento de Educação Básica.
Almeida, P. (1994). Imaginar para aprender: O caso da matemática. NOESIS, 32, 29-32.
Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in dynamic geometry environments. ZDM The International Journal on Mathematical Education, 34(3), 66–72.
Baccaglini-Frank, A., Mariotti, M. A., & Antonini, S. (2009). Different perceptions of invariants and generality of proof in dynamic geometry. In M. Tzekaki & H. Sakonidis (Eds.), Proceedings of 33rd International Conference of Psychology of Mathematics Education, 2 (pp. 89-96). Thessaloniki: Greece.
Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM The International Journal on Mathematics Education, 40, 501-512.
Bennett, D. (2003). A geometria dinâmica renova o interesse num velho problema. In Associação de Professores de Matemática (Ed.), Geometria Dinâmica (pp. 45–50). Lisboa: APM.
Boehm, K. (1997). Experiences with the Geometer’s Sketchpad in the classroom. In J. R. King & D. Schattschneider (Eds.), Geometry Turned On! Dynamic Software in Learning, Teaching and Research (pp. 71-73). Washington: Mathematical Association of America.
Boero P., Garuti R., & Lemut E. (2007). Approaching theorems in grade VIII: Some mental processes underlying Producing and proving conjectures, and conditions suitable to enhance them. In P. Boero (Ed.), Theorems in schools: From history, epistemology and cognition to classroom practice (pp. 247–262). Rotterdam: Sense Publishers.
Bogdan, R., & Biklen, S. (2013). Investigação qualitativa em educação: Uma introdução à teoria e aos métodos. Porto: Porto Editora.
Boyer, C. B. (1998). História da matemática (2.ª ed.). São Paulo: Editora Edgard Blücher Lda.
Candeias, N. J. (2005). Aprendizagem em Ambientes de Geometria Dinâmica. Tese de mestrado. Coleção Teses. Lisboa: Associação de Professores de Matemática.
Davis, P., & Hersh, R. (1995). A experiência matemática. Lisboa: Gradiva.
Ferreira, R., & Vale, I. (2013). Raciocínio em geometria. In A. Domingos, I. Vale, M. Saraiva, M. Rodrigues, M. Costa & R. Ferreira (Eds.), Investigação em Educação Matemática: Raciocínio Matemático (pp. 82-86). Sociedade Portuguesa de Investigação em Educação Matemática. ISSN: 2182-0023
Fuys, D. (1985). Van Hiele levels of thinking in geometry. Education and Urban Society, 17(4), 447-462.
Garry, T. (2003). Geometer’s Sketchpad na sala de aula. In Associação de Professores de Matemática (Ed.), Geometria Dinâmica (pp. 69–78). Lisboa: APM.
Hadas, N ., Hershkowitz R., & Schwarz B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44(1), 127-150.
Itzcovich, H. (coord.) (2007). La matemática escolar. Las prácticas de enseñanza en el aula. Buenos Aires: Aique.
Keyton, M. (2003). Alunos descobrem a geometria usando software de geometria dinâmica. In E. Veloso & N. Candeias (Orgs.), Geometria dinâmica: Selecção de textos do livro Geometry turned on! (pp. 79-86). Lisboa: APM.
King, J. R., & Schattschneider, D. (1997). Geometry turned on! Dynamic software in learning, teaching and research. Washington USA: Mathematical Association of America.
Lannin, J., Ellis, A., & Elliot, R. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in prekindergarten – grade 8. Reston: NCTM.
Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17-32. DOI: 10.1080/14794802.2011.550715
Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic Geometry Systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163-185. DOI: 10.1080/14794802.2012.694282
Ministério da Educação (2007). Programa de Matemática do Ensino Básico. Lisboa: ME-DGIDC.
Olivero, F. (2001). Conjecturing in open geometric situations in a dynamic geometry environment: An exploratory classroom experiment. In C. Morgan & K. Jones (Eds.), Research in Mathematics Education, 3 (pp. 229-246). London.
Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM The International Journal on Mathematical Education, 40, 385-400.
Pimenta, P. (2007). A geometria dinâmica no ensino básico e secundário. Educação e Matemática, 95, 37-40.
Pimentel, T., & Vale, I. (2012). Os padrões e o raciocínio indutivo em matemática. Quadrante, XXI(2), 29–50.
Radford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM Mathematics Education, 40, 83–96. DOI: 10.1007/s11858-007-0061-0
Rivera, F., & Becker, J. (2007). Abduction-induction (generalization) processes of elementary majors on figural patterns in algebra. Journal of Mathematical Behavior, 26, 140-155.
Senk, S. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20, 309-321.
Stanford Encyclopedia of Philosophy (2010). Charles Sanders Peirce (Rev. Ed.). Acedido em maio 10, 2014, em http://plato.stanford.edu/entries/peirce/
Talmon, V., & Yerushalmy, M. (2004). Understanding dynamic behavior: Parent-child relations in dynamic geometry environments. Educational Studies in Mathematics, 57, 91-119.
Villiers, M. (2003). O papel da demonstração na investigação em geometria realizada em computador: Algumas reflexões pessoais. In Associação de Professores de Matemática (Ed.), Geometria Dinâmica (pp. 31-44). Lisboa: APM.
Nota: Este artigo está escrito segundo o Novo Acordo Ortográfico.